skip to main content


Search for: All records

Creators/Authors contains: "Heitmann, Thomas W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Topological kagome magnets RMn6Sn6(R = rare earth element) attract numerous interests due to their non-trivial band topology and room-temperature magnetism. Here, we report a high entropy version of kagome magnet, (Gd0.38Tb0.27Dy0.20Ho0.15)Mn6Sn6. Such a high entropy material exhibits multiple spin reorientation transitions, which is not seen in all the related parent compounds and can be understood in terms of competing magnetic interactions enabled by high entropy. Furthermore, we also observed an intrinsic anomalous Hall effect, indicating that the high entropy phase preserves the non-trivial band topology. These results suggest that high entropy may provide a route to engineer the magnetic structure and expand the horizon of topological materials.

     
    more » « less
  2. Abstract

    Ordered carbon vacancies were detected in zirconium carbide (ZrCx) powders that were synthesized by direct reaction. Zirconium hydride (ZrH2) and carbon black were used as starting powders with the molar ratio of ZrH2:C = 1:0.6. Powders were reacted at 1300°C or 2000°C. The major phase detected by x‐ray diffraction (XRD) was ZrCx. No excess carbon was observed by transmission electron microscopy (TEM) in powders synthesized at either temperature. Ordering of the carbon vacancies was identified by neutron powder diffraction (NPD) and further supported by selected area electron diffraction (SAED). The vacancies in carbon‐deficient ZrCxexhibited diamond cubic symmetry with a supercell that consisted of eight (2 × 2 × 2) ZrCxunit cells with the rock‐salt structure. Rietveld refinement of the neutron diffraction patterns revealed that the synthesis temperature did not have a significant effect on the degree of vacancy ordering in ZrCxpowders. Direct synthesis of ZrC0.6resulted in the partial ordering of carbon vacancies without the need for extended isothermal annealing as reported in previous experimental studies.

     
    more » « less